
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2003, p. 2962–2965 Vol. 47, No. 9
0066-4804/03/$08.00�0 DOI: 10.1128/AAC.47.9.2962–2965.2003
Copyright © 2003, American Society for Microbiology. All Rights Reserved.

Gentamicin Delivery to Burkholderia cepacia Group IIIa Strains via
Membrane Vesicles from Pseudomonas aeruginosa PAO1

Nick D. Allan and Terry J. Beveridge*
Canadian Bacterial Disease Network, National Centre of Excellence, Department of Microbiology,

College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Received 15 April 2003/Returned for modification 5 May 2003/Accepted 30 May 2003

When Pseudomonas aeruginosa PAO1 is treated with gentamicin, it releases membrane vesicles containing
gentamicin (g-MVs) and peptidoglycan hydrolase, which makes the MVs bactericidal. We evaluate the ability
of g-MVs to deliver gentamicin past the intrinsic permeability barrier of group IIIa Burkholderia cepacia and
show that strain CEP0248 with low resistance to gentamicin is killed but the highly resistant strain C5424 is
not. Immunoelectron microscopy revealed that gentamicin was delivered into both strains, suggesting that
there might be another mechanism of resistance in C5424.

Together with Pseudomonas aeruginosa, Burkholderia cepa-
cia is a primary opportunistic pathogen of cystic fibrosis pa-
tients. Infection with B. cepacia is generally associated with
aggressive necrotizing pneumonia and is accompanied by an
acute systemic infection, such as bacteremia or septicemia (8).
This rapid clinical decline due to B. cepacia colonization is
known as the so-called “cepacia syndrome” and leads to mor-
tality in 20 to 35% of chronically infected individuals (9).
Treatment is often made more difficult due to the innate im-
permeability of B. cepacia’s outer membrane (OM) to antibi-
otics like aminoglycosides, polymyxin, and �-lactams (7, 17,
25).

One potential method of circumventing this resistance is
through the use of a specific membrane-based antibiotic deliv-
ery system, such as gentamicin-containing membrane vesicles
(g-MVs) that can breach the OM. The g-MVs from P. aerugi-
nosa PAO1 successfully deliver gentamicin and a peptidogly-
can hydrolase into both gram-positive and -negative bacteria
(11, 12, 16). For gram-negative pathogens, g-MVs contact the
bacterium’s OM and fuse into it so as to release the vesicle’s
contents into the periplasm of the cell. Here, the (now)
periplasmic gentamicin is actively taken into the cytoplasm to
inhibit protein synthesis. At the same time, the (now) periplas-
mic peptidoglycan hydrolase begins to hydrolyze the host’s
peptidoglycan layer. This two-pronged attack by the g-MVs
might be an attractive system to use against pathogens that are
intrinsically impermeable to antibiotics, especially since g-MVs
are thermodynamically stable and do not break down in sus-
pension (12, 16). The aim of the present work was to study the
utility of g-MVs against B. cepacia. Strains C5424 and
CEP0248 were chosen as the test strains because they repre-
sent members of the B. cepacia group IIIa complex, which
comprises 80% of the B. cepacia clinical isolates in Canada
(22). Additionally, these two distinct strains possess smooth
lipopolysaccharide (LPS) and cable (Cbl) pili, suggesting that
they might present similar surfaces for g-MV attachment. The

striking difference between the strains is in their susceptibility
to gentamicin. The MIC of gentamicin for CEP0248 is 5 �g/ml,
while that for C5424 is 20 �g/ml.

The g-MVs were generated from P. aeruginosa PAO1 as
described previously (12) and contained 7.0 (�1.0) ng of gen-
tamicin/�g of MV protein as estimated by enzyme-linked im-
munosorbent assay (12, 16). The killing potential of these
g-MVs was monitored by performing viable plate counts after
treatment (11, 13, 16). No growth was taken as cell death due
to the action of soluble gentamicin or g-MVs.

From the viability studies (Fig. 1), it is clear that C5424 was
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FIG. 1. Bactericidal assays to monitor the effects on B. cepacia
C5424 (A) and CEP0248 (B) of soluble gentamicin at 2.5 times the
MIC (�), PAO1 n-MVs (■ ), PAO1 g-MVs (Œ), and a HEPES buffer
control (}). The MVs were added at a protein concentration of 100
�g/ml, and error bars represent standard deviations.
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not susceptible to g-MVs, naturally produced MVs not con-
taining gentamicin (n-MVs), or soluble gentamicin at a dose of
2.5 times the MIC over the test period. CEP0248 showed a
viability decline with soluble gentamicin at 4 h and complete
viability loss at 24 h. A similar trend was also noted with
g-MVs, with a 4 to 5 log10-fold decrease in viability at 24 h.
Both strains showed no significant viability loss over 24 h under
control or n-MV conditions.

One of the potential barriers to effective cellular binding of
g-MVs might come from the extensive network of Cbl pili (20)
produced by B. cepacia (Fig. 2). In order to assess the binding
of the g-MVs to B. cepacia, transmission electron microscopy
(TEM) was employed to view samples taken at specific time
points in the bactericidal assay (Fig. 3). B. cepacia produces its
own n-MVs (N. Allan and T. Beveridge, submitted for publi-
cation), and this, of course, complicates the monitoring of
exogenous g-MVs from PAO1. By taking advantage of the fact
that the g-MVs from PAO1 possess immunogenically distinct
B-band LPS on their surfaces (11–13, 15), we employed gold-
conjugated anti-B-band monoclonal antibodies (anti-B MAbs)

FIG. 2. Negatively stained whole mount of C5424 showing the del-
icate Cbl pili that are removed by washing during the immunogold
labeling described in the legend to Fig. 3. Scale bar, 1 �m.

FIG. 3. TEM images of negatively stained C5424 cells labeled with gold-conjugated anti-B MAbs towards PAO1 LPS. (A) Image from the
antibactericidal assay at time zero. Arrows point to labeled MVs in the process of attaching to a cell. (B) Image taken at 1 h. Arrows show labeled
MVs. (C) Image taken at 24 h. The gold label can be seen throughout the surface of this cell, indicating that the PAO1 g-MVs have fused the
membrane and the PAO1 LPS has spread over the cell surface. (D) Control cells labeled with anti-B MAbs but without PAO1 g-MVs added. Scale
bars, 100 nm.
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(12) to distinguish between PAO1 g-MVs and B. cepacia n-
MVs. In this way, PAO1 g-MVs could be monitored by TEM
throughout the bactericidal assay. Since C5424 retained its
resistance to gentamicin whereas CEP0248 did not, we show
only the results for C5424 (i.e., we wanted to ensure that the
PAO1 g-MVs were interacting with C5424 cells). No cross-
reactivity to B. cepacia LPS was observed with the anti-B MAbs
(Fig. 3D). After B-band LPS was detected, the binding and
fusion of PAO1 g-MVs to C5424 (Fig. 3A and B) and their
subsequent integration into the OM (Fig. 3C) were seen.

In order to monitor the delivery of gentamicin via g-MVs, we
prepared thin sections from samples taken at different time
points as described previously (16). Gold-conjugated antibod-
ies to gentamicin (see Sigma data sheet on product G 1015 for
details of specific antibody activity) were used to detect the
antibiotic within the g-MVs and to monitor the antibiotic’s
dissemination throughout the cells (Fig. 4B and C). Negative
controls using PAO1 n-MVs revealed no cross-reactivity with
the antigentamicin (Fig. 4A). Since g-MVs were able to suc-
cessfully deliver gentamicin into the cytoplasm of intact C5424
cells and yet no reduction in the number of CFU was seen in
the bactericidal assay, we believe that there must be alternative
resistance mechanisms at work in addition to impermeability.
Such mechanisms might include enzymatic degradation of the
drug via plasmid-encoded enzymes (1), active efflux pumps
(24), or altered ribosomes (6). At present we have no infor-
mation about alternative resistance mechanisms in C5424.

This study demonstrates the successful use of P. aeruginosa
g-MVs in producing a 4 to 5 log10-fold decrease in viability at
24 h in CEP0248, which has an intermediate resistance to
gentamicin. While the use of soluble gentamicin resulted in a
complete loss in viability, the g-MV delivery system produced
a marked decrease in viability with a mere fraction (7 ng/�g of
MV protein) of the usual dose. Another favorable advantage
to using g-MVs as a delivery vehicle was described in a previ-
ous study (10) where g-MVs from Shigella flexneri were used to
successfully deliver gentamicin to intracellular S. flexneri or-
ganisms infecting a Henle tissue cell line. Evidence suggests
that B. cepacia might be an opportunistic intracellular patho-
gen (2, 19), a possibility that highlights the potential benefits of
using g-MVs to treat intracellular B. cepacia infections.

Our study also demonstrates the successful fusion of MVs

from P. aeruginosa to B. cepacia. These organisms have been
shown to form mixed biofilms when they coinfect the lungs of
cystic fibrosis patients (19, 23). It is conceivable that, under the
conditions of a mixed microbial community, MVs are con-
stantly being shed by both organisms, allowing for the ex-
change of plasmids (5, 26) and periplasmic inactivating en-
zymes (3), and may even participate in quorum sensing by
facilitating the exchange of large 12-C acylhomoserine-lac-
tones (4, 14, 18, 21).
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